
----__ 

------_____-_ 

/ 
i 

/ 
i 

CLASSIFICATION OF SPACES SUPPORTIN 

TRANSLATION NO. 29 

J E T  P R O P U L S I O N  L A B O R A T O R Y  
C A L I F O R N I A  I N S T I T U T E  O F  T E C H N O L O G Y  I 

I 
1 
I 



ASTRONAUTICS INFO RM ATION 

Translation Xo. 29 

CLASSIFICATION O F  SPACES SUPPORTING 

GRAVITATIONAL FIELDS 

A. Z. Petrov 

Scientific Transactions of the Kazan State University 
Jubilee (1804- 1954) Collection 

Vol. 114, Book 8,  1954 

Translated by Michael Karweit 

J E T  P R O P U L S I O N  L A B O R A T O R Y  

C A L I F O R N I A  I N S T I T U T E  O F  T E C H N O L O G Y  

P A S A D E N A ,  CALIFORNIA 

October 1, 1963 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

JPL Translation No. 29 

CONTENTS 

I. 

II. 

Ill. 

Bivector Space ............................................................................................................................................ 

Classification of T4 .................................................................................................................................... 

The Canonical Forms of the Matrix ( IRap l l  .......................................................................................... 

A. Manifold T4 with Characteristic [ 1 1, 1 1, 1 1 1 ........................................................................ 

B. Manifold T4 with Characteristic [21, 2 1 ................................................................................ 

C. Manifold T4 with Characteristic [3, 3 ] ...................................................................................... 

D. Summary ............... .......................................................................................................... 

- _ -  

_ _  

- 

References .............................................................................................................................................................. 

2 

5 

11 

1 1  

17 

20 

23 

25 

iii 



u 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

IPL Translation No. 29 

CLASSIFICATION OF SPACES SUPPORTING GRAVITATIONAL FIELDS] 

A. Z. Petrov' 

Th i s  art icle gives an expanded proof of resu l t s  derived by the author earlier and first  pubIished in 

1951 (Ref. 1). We will treat a V4 supporting a gravitational field (that is, we have in four dimensions 

. .  
ds' = g.. dx' d d  (1) 'I 

and, further, the field equations 

R . .  = K g . .  ( 2) 'I ' I  

-we will call such a manifold a T4), and we will establish for i t  a classification scheme by investigating 

the algebraic structure of the curvature tensor. 

'Scientific Transactions of the Karan State University, (Named for V. I. Ul'yanov-Lenin), Jubilee (18041954) 
Collection, VoI. 114, Book 8, 1954 pp. 55-69. 

'Kazan State University, Department of Geometry. 
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1. BIVECTOR SPACE 

We consider some point P in  our manifold T, and compare it  with a local centro-affine E,. In th i s  E,, 

we s ingle  out all the tensors  that satisfy the conditions: (1) the  number of covariant ind ices  is the same as 

the number of contravariant indices,  and (2) the co- and contravariant ind ices  may be grouped in  separa te  

antisymmetrical pairs. We wilI consider every such pair as one collective index, which we will denote with 

a Greek letter. In th i s  way, we derive a manifold of N = n(n - 1)/2 dimensions (six dimensions for n = 4). 

T h e  tensors of E, possessing the  indicated properties define, in th i s  space ,  tensors of half their order. 

T o  each point of the T4, in th i s  way, there corresponds a loca l  six-dimensional centro-affine geometry 

with a transformation group 

In fact, if we order the collective index (choosing one from the two poss ib le  pa i r s  ij and ji), then we have 

s i x  possible collective indices. We may establish, for example, the following correspondence: 

1 - 14 2 - 24 3 - 34 

4 -  23 5 - 31 6 - 12 

.. 
We consider now the  transformation of the components T'J of a general bivector: 

Setting 

[where A i f  = ($)J 

2 
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we readily derive in terms of the collective indices the relationship 

I I 

T a  = A E T a  

that  i s ,  the  set  of the bivectors of T, (the dimension here i s  not significant) determines in E, a set of 

contravariant vectors satisfying the conditions of Eq. (3). T h e s e  relationships may be  verified immediately 

by a change to  Latin indices. 

We will call the derived manifold a bivector manifold. In what follows, the curvature tensor of T4 

will be of spec ia l  interest; in bivector space,  it  will correspond to a symmetrical tensor of rank two: 

in  each iocai E,, one may introduce a metric, using for th i s  purpose some tensor of T4 possessing the 

properties 

and with the condition that the rank two tensor in E, corresponding to i t  i s  nonsingular. A s  such a funda- 

mental tensor of E, we take the tensor 

(4) 

It i s  ea sy  to see tha t  gap gives  a nondegenerate metric, s ince  g.. f 0, and I ' l l  

P f O  

also will be  determinate; for an indeterminate g i i ,  the  tensor g For a determinate g . . ,  gap 

general, b e  indeterminate. We note that we will consider only those  gravitational f ields tha t  correspond to  a 

real distribution of matter in  space; for th i s  i t  is necessary (Ref. 2) that, at every given point of T4, the  

fundamental tensor g. .  in a real system of coordinates be reducible to the form 

a lso  will, in aP ' I  

' I  

( g . . )  ' I  = (-l -l -1 l )  

3 

(5) 
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that i s ,  we  arrive, in such a way, at Minkowski space. Then from Eq. (4, i t  follows that, for the frame of 

reference corresponding to the matrix (51, the fundamental tensor of R ,  will have the form 

that i s ,  gab i s  an indeterminate tensor. 

4 
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11. CLASSIFICATION OF T, 

A se r i e s  of most interesting problems arising in the study of Riemannian manifolds is connected 

with the  curvature tensor of V,. With the help of this  tensor, as is known, the  curvature may be evaluated in 

a given two-dimensional direction at a given point: 

R i j k l  V'j Vkl  
K =  (7) 

where g t akes  the form of Eq. (4, and where the two-space direction determined by V i ,  V i  is character- 
P q r s  1 2  

ized by the simple bivector V'j = V i  V i .  We now introduce the general curvature of V,, by relaxing in Eq. (7) 
[ l  21 

the requirement of simplicity of the bivector V i ] .  The  general invariant K at some point in V, wiii be a 

homogeneous function of the  components of t he  bivector V'J (not simple, in  general, and  of zero rank); 

evidently, i t  may be written in the form 

.. 

We consider now the  problem of determining the critical va lues  of K, which is equivalent to finding 

the vectors V a  in R,,, for which K assumes the critical values. Let u s  agree to call t hese  critical va lues  of 

K stationary curvatures of V, and to call the corresponding bivectors V a  the  stationary directions of V,. I n  

th i s  way, the problem i s  reduced t o  the  determination of unconditional-stationary vectors  of V a  in bivector 

space,  based on the necessary and sufficient conditions of stationariness: 

d K  = o  
a va 

It is necessary to bear in mind that, with an indeterminate g..  tensor, gap is also indeterminate; consequently, 

the appearance of null stationary directions i s  possible: 
'1 

gap vavP = 0 

For the time being, we exclude th i s  particular case,  but will return to it below. 

(10) 

S 
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If Eq. (10) does not take place, then Eq. (9) reduces to 

that is, the stationary directions of V, will be the principal directions of the tensor R 

and the stationary curvatures of V' will be the characterist ic quantit ies of the secular equation 

in bivector space,  QP 

L e t  Eq. (10) hold for a stationary Vu. Since we are interested in K only, satisfying Eq. (9), K is a 

continuous function of Vu; consequently, i t  is necessary that the condition R 

the value of K for the stationary null direction of Vamay be calculated in the following way: 

VaVP = 0 be fulfilled. Then 
UP 

K ( V 9  = lim K ( V a + d V a )  
d V a + O  

If we designate, for arbitrary V q  

4 = g VUVP 4 $ = R u p V a V p  

then, for a stationary null V q  

a 
E -  +avo + .-- 
o avo 

= l im 

(13) 

* av* 

6 
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and, s ince this  limit may not depend on the method of variation of dVa, 

a 

that  i s ,  we again arrive at  Eq. (11). 

The  determination of stationary curves and directions of R ,  l eads  to the study of the pair of 

quadratic forms given in Eq. (13). Consequently, canonical expression of this  pair of forms in real space  

permits classification of the curvature tensor of V,, not only a t  the given point, but also in the region of V, 

h a t  iiic!udcs this p i n t ,  in which &he ehrrrarteristic K-matrix 

is invariant. To every type of characterist ic matrix (14), there corresponds a special  kind of gravitational 

field that determines the desired classification of T4. 

may be converted to the form of Eq. (6); by using I IgaB I I By using a real transformation, the matrix 

real orthogonal transformations, the matrix I I R ap I I may be simplified. 

Theorem 1. The matrix IIR 1 1  in an orthogonal frame of reference (Eq. 5) may be symmetrically 4 
factored. 

In a frame of reference (Eq. 5), the equation of the field assumes the form 

ek = f l  

that is, with i = j ,  

C ek R i k i k  = Kei 
k 

and, with i f j ,  

ek  Rik ik  + el Ri l i l  = 0 

7 
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Describing these relationships in the selected indices of bivector space  and taking into account the numer- 

ation introduced in P a r t  I, we derive for the matrix the expression 

I P a p  I =  ( 15) 

where 

map = m p a  
(.u, p = 1, 2, 3) 

- nap - n p a  

and where 

3 3 
2 n.. = O C mii = K and l l  i =  1 1 

because of the Ricci identity. We note that V. F. Kagan arrived at this  kind of matrix, however, with the 

additional condition of orthogonality, by studying a group of Lorentz transformations (Ref. 3). Y. S. Dubnov 

(Ref. 4) and A. M. Lopshitz (Ref. 5) studied this  type of matrix with the same assumption of orthogonality. 

The  fact  proved in Theorem 1 holds for any orthogonal frame of reference,  and, consequently, considering 

that an orthogonal frame of reference i s  determined for n = 4 up to s ix  degrees of freedom, one may further 

simplify the matrix by a choice of s i x  rotations. 

Firs t  we prove a theorem that sharply restricts the number (at first glance) of types of characterist ic 

matrices (14). 

8 
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Theorem 2. The characteristic K-matrix (14) always cons is t s  of two equal parts. 

We reduce matrix (14) to a simpler form by using so-called elementary transformations that, as i s  

known, change neither the elementary divisors of the matrix nor, consequently, its characteristic. We 

represent this matrix as 

where 6 i s  the Kronecker delta. 
a,, 

Adding to each of the three first  columns the corresponding column of the second three, multiplied 

by i, we derive the equivalent matrix 

Adding to  each of the second three rows the corresponding row of the first three, multiplied by i, we obtain 

Finally, multiplying the first three columns by i / 2  and adding to the  corresponding second of three 

columns, and then doing the same with the second three rows, we reduce the matrix to 

equivalent to the K-matrix (14). The problem is thus reduced to study of two three-dimensional matrices 

P ( K )  and P ( K ) ,  the corresponding elements of which are complex-conjugate. From here i t  follows that the 

elementary divisors of these two matrices are also complex-conjugate, and, consequently, their character is t ics  

- 

9 
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have identical forms. In t h i s  way, the characteristic of our K-matrix divides into two similar par ts  - which 

i s  correct. 

We note that the principal directions and invariant groups of the K-matrix a lso should be complex- 

conjugate in pairs.  

Now one may introduce the classification of gravitational fields: 

THEOREM 3. There exis t  three and only three types of gravitational field. The three-dimensional 

matrix P ( K )  may have only one of three possible types of characterist ic:  [1 1 13, [2 11, [3I ,  i f  one dis- 

regards the case  in which some of the elementary divisors have identical  bases  and, consequently, some of 

the numbers appearing in the brackets are included in round parentheses (for example: [ ( l l )  11, [(21)I,  etc.). 

The  characterist ic of P ( K )  may take the same form. Then the characterist ics of the K-matrix will be 

written 

1. [i1, i i ,  i i l  
( 16) 

where in each case  the dashed numbers designate the power indices  for the elementary divisor with a base 

that i s  complex-conjugate to the base of the elementary divisor, the power of which is expressed by the pre- 

ceding number. 

Each type of gravitational field will be studied separately in P a r t  111; for each type we will derive 

the canonical forms of the matrix I IR 1 1 .  4 

1 
I 
I 
I 
I 
I 10 
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111. THE CANONICAL FORMS OF THE MATRIX / / R a p  1 1  

i 
I 
1 
I 
I 
I 

A. Manifold T4 with Characteristic I l l ,  1 1 ,  l i ]  

We consider the f i rs t  type of T4 with characteristic Eli, 11, 1TI. Since in this case  the 

characterist ic is of the simple type, the tensor R has s i x  nonnull, mutually orthogonal principal directions 

(Ref. 6). These  directions of bivector space a t  the given point T4 will give the bivectors a specif ic  structure, 

which will be derived. 

We denote the component vectors of a real orthogonal frame of reference at a point of T4 by cfi 
k 

(k, i = 1, 2, 3, 4); the simple bivector 5' @ (k + l ) ,  distributing the two-space (area) determined by the 

frame of reference, will be, for shortness,  designated c${. In bivector space  these simple bivectors determine 

s i x  independent, nonuii, mutuaiiy orthogonai coordinate vectors e" = S z ;  any vector of ii,, in particuiar the 

vectors of the principal directions of R U B ,  may be expressed in terms of these vectors. 

[ k  1 1  .. 

U 

We will show that, for the vectors of the principal directions [they are determined uniquely only 

when the roots of the secular equation (Eq. 12) are all different], one may take the vectors in the form 

In most cases ,  the condition that W" determines the principal direction of the tensor RUB i s  written 

But this  system of s i x  equations, because of the symmetry of the Kmatrix,  reduces to three 

equations: 

(msl +_ i n s l  + K ) X  + (ms2 f i n s 2 ) p  + ( m s 3  f i n s 3 ) v  = 0 (s = 1, 2, 3) 

In order that  A, p,  v be nonzero solutions of th i s  system, i t  i s  necessary and sufficient that  K be a 

root of one of the equations 

I P ( K ) l  = 0 I ' i ( K )  I = 0 

that  is, a root of the secular  equation (Eq. 12); this proves the form of Eq. (17). 

(19) 

11 
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To the vector W (Eq. 17) of manifold R ,  at a given point of T4, there corresponds the bivector 

.. 
It is not difficult to see that, under a real orthogonal transformation, W'I transforms into a bivector 

* * *  
of the same type, during which A , p ,  v + A , p , v , so that the n o m  of the bivector remains invariant: 

L e t  the roots of (Eq. 1 3 ,  K ( s  = 1, 2, 3, correspond to the vectors of principal direction W"; then the 
S S - 

K , according to the preceding, must correspond to W", with proper numeration. To the root K corresponds 
s + 3  S 1 
the bivector 

and to K - the bivector 
4 

* 
We represent the bivector W P q  as a sum of two real bivectors V P q  + i V q ;  then, 

1 1 1 

L e t  

X = a + i b  
1 1  

p = a + i b  
2 2  

v = a + i b  
3 3  

where a, b are real numbers (s = 1, 2, 3) and, consequently, 
s s  

12 
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Since Wais a nonnull vector of R6, one may consider i t  to be a unit vector 
1 

From th i s  we come to the conclusion tha t  

3 
z ( b 2  - a2) > 1 ( 22) 

Now one may verify the following statements: 

* 
1. T h e  real bivectors VPq and Vpq are one-sided. 

1 2 
* 

2. The  real bivectors VPq and VPq are  0-parallel (from Eq. 21). They may not be 2/%parallel 
1 2 

s ince  that may happen only under the condition that the coefficients of identical  C P q  are 

proportional; in our case ,  they would have to be zero, s ince  if 

.. 
&I 

a b 
1 1 

_ = - -  

b a 
1 1 

then 

a 2  + b 2  = 0 
1 1  

They may not be 1/2-parallel s ince  then V u  would be a single-sided complex bivector, 

but, us ing  the  condition of simplicity, we could arrive at a contradiction between Eq. (21) 

and (22). Thus  there remains only the possibil i ty indicated above. 

1 

13 



JPL Translation No. 29 

* 
3. T h e  real bivectors V P q  and V P q  are 2/2-perpendicular. For th i s  i t  i s  necessary and 

1 2 
sufficient that, with arbitrary i and j ,  the equality be fulfilled: 

* .  v. V S I  = 0 
lZS 

I t  is easy  to s ee  that th i s  reduces to Eq. (21) and, consequently, i s  true. 

We consider now the simple bivector V P q .  Its norm, from Eq. (22),is 
1 

In the  p lane  of th i s  rea l  bivector, one may select two real, orthogonal, nonnull vectors q p ,  u p .  Then the norm 

oi our bivector may be  expressed in tiie iorm 

and, consequently, these  two vectors are either both space-like or both time-like. Their n o m s  may not be 

greater than zero s ince ,  assuming these two orthogonal real  vectors for coordinates, we contradict the law of 

inertia of the quadratic form. Consequently, these two vectors both have negative norms. In view of this ,  by 

renormalizing, one may take them as the vectors e’, 5’ of a new real orthogonal frame of reference. 
* .  * .  
2 3  
* 

In exactly the same way, in the plane of V p q  we determine two orthogonal vectors, real and nonnull, 
1 

but having norms of opposite s igns  such that 

* .  * .  
1 4  

We cal l  these vectors e’, e’. In th i s  system of coordinates 

{** 3*} 

* 
We note  that t he  frame of reference 5 is chosen up to a rotation in  the  p lane  of e 5 and up to a Lorentz 

rotation in  the  p lane  of T h e  bivectors W p q  are of interest, of course, only up to a scalar factor. 

14 
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* * 
Now, writing the  condition of orthogonality of WPq and VPq, we find that the bivector of the second 

1 2 
principal direction must take the form 

We u s e  the frame of reference indicated above and perform the rotation 

* * 

* * 
EP = sinh cp CP + cosh 4 CP 
4 1 4 

* * 

After these transformations, W will take the same form, and W becomes 
1 2 

where 

v" = s in  
2 

cosh 4 + p cos  + cosh 4 + q sin $J sinh 4 

+ i ( cos  # sinh 4 + q c o s  # cosh 4 - p sin + sinh 4)  

* v 
2 

p + L q = -  

t 

15 



JPL Translation No. 29 

and where 

a real  4 and $J for every v = 0. Now the frame of reference i s  uniquely determined, and in it, taking account of 

the orthogonality of W, W, and I, these bivectors take the form (within a s c a l a r  factor) 

may be considered different from zero, s ince  otherwise we would have $ = $J = 0. One can find 
,.-. 2 

2 

1 2  3 

Because of the  complex conjugation indicated above, 

Now, writing condition (18) for each of these  bivectors and taking 

we easi ly  find 

mii = a 

m.. = 0 
za 

n.. = 0 
' I  

(i = 1, 2, 3; i f j )  

16 
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and, consequently, for the first type of T4, we have derived the following canonical matrix: 

-a  
1 

- a  
2 

-a 
3 

-P 
1 

-P 
2 

-P 
3 

-P 
1 

-P 
2 

-P  
3 

a 
1 

a 
2 

a 
3 

where the  real parts of t he  stationary curvatures are connected by the relationship 

3 

1 s  
x U = K  

and the imaginary parts, because of the Ricci identity 

R1423 + R1234 -+ R1342 = 

sa t i s fy  

3 

1 s  
z p = o  

B. Manifold T4 with Characteristic [21,-%] 

( 25) 

We now d i scuss  a T4 with a characteristic of the second type: [21,??1]. As was indicated in 

Part 11, for the  principal directions and invariants of a group of K matrices, one may take the principal 

directions and invariants of the group of matrices P ( K )  and P ( K ) .  It follows tha t  i t  is sufficient to study 

the matrix P ( K )  having the characteristic [21]. 

- 

17 
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With such characterist ic,  the  tensor Pap  = -map + i n of three-space h a s  (Ref. 6) one principal QP 
nonnull direction 

( P a p  - f sap> w p  = 0 (26)  
1 

Orthogonal to W there i s  a null principal direction W 
1 2 

( p a p  - = O (27) 

Bes ides  there ex i s t s  a null-vector W P , orthogonal to WP, and nonorthogonal to Wp, which together with these  
1 2 

vectors forms an invariant square of t he  tensor P which i s  expressed by the relation QP' 

where c7 if; an arbitrary sca l a r  different from zero. This arbitrariness i s  t he  result of W and W being null. 
2 3 

Each principal direction and group of P will determine corresponding principal directions and QP 
groups of R they will all be defined by bivectors of the  type in Eq. (17). ; 

Let the root K correspond to a simple elementary divisor ( K  - K )  of a field of Kmatr ices ,  and let  the 
1 1 

principal direction be determined by the  bivector WQ. Since t h i s  bivector is nonnull, all the  arguments set 

forth for W a  in the  preceding case apply to it. Consequently, one may choose a real  frame of reference in 

which 

I 

1 

This frame of reference is determined up  to a rotation in the  plane (ii} and a Lorentz rotation in the 
I - -\ 

. Since the bivectors W P q  and W P q  must be  orthogonal to W P q ,  they take the form 
2 3 1 

18 
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The condition of nullness  of these bivectors requires 

g 2 + v 2 = o  
2 

2 /-L + 2 = 0  
3 3  

that is, 

2 = 

3 = e 2 i t  

where e 

Consequently, one may assume 

and e 1 2 are k 1. Finaiiy,  considering the fact that they may mi Le Urihogond, we fiiid that c1 = e2. 

where A i s  an arbitrary scalar multiplier other than zero. 

Now i t  remains for u s  to describe the conditions analogous to the conditions of Eq. (261, (271, and 

(28) for the tensor R a p ,  again taking ea= 8;. These conditions will have the form 
V 
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T h e  tensor g 

( R a p )  (Eq. 11) will have the  form 

i s  determined by the matrix (6). Taking in turn a = 1, 2, 0 . -  , 6, we easily find that the matrix 4 

Rap = 

Here o may be chosen arbitrarily but not equal to zero; a and ,L3 as before are related: 
S S 

a + 2 a = ~  
1 2 

p + 2 p = o  
1 2 

The frame of reference i s  determined up to a rotation in the plane { 6, F} and a Lorentz rotation in the 
2 3  

- 
C. Manifold T4 with Characteristic [3, 3 1 

The  third type of T4 with characterist ic [ 3 , 3 ]  remains to be considered. With such a characterist ic 

(Ref. 6) for the tensor Pap, we find one principal nonnull direction W p  and, in addition, two bivectors W p  2 

and U'P possessing the  properties 
1 

3 
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(31) 

where c a n d  7 are arbitrary numbers not equal to zero. The vector W a  is nonnull, but W a  i s  null. In addition, 

P i s  orthogonal to W a  but not orthogonal to Wa; Wais orthogonal to pa. 
1 2 3 2  3 

2 3 

Since WPq is a nonnull, as in  the two previous cases ,  choosing corresponding frames of reference 
2 

(with two degrees of freedom), one may write this  vector in the form 

Then for the bivectors I and W, if the conditions of orthogonality and nul lness  which were indicated above 

are considered, we obtain the expression 
1 3 

where X is some value other than zero. Further study is conducted in the same way as 

of characteristic: we write the conditions in Eq. (31) for R bearing in mind the fact  4' 

for the preceding type 

that Wais a vector of 
1 

principal direction (in bivector space),  and that the vectors Wa, Wa, Wadetennine invariant groups of the 

tensor R These conditions are 
1 2 3  

4' 

where u and r are numbers other than zero. 
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Considering that the bivector WPq at a given point in  T4 determines a local metric bivector space  
0- 

(the vector W p q  + W a )  and taking coordinates such that 
n t  u 

it is e a s y  to  show that the  system of equations (32) reduces to the following nine independent equations: 

m l l  + i n l l  + i m 1 3  - n13 = -K  

m 1 2  + i n l 2  + i m 2 3  - n23  = 0 

m13 + i n l 3  + i m 3 3  - n33  = i K  

m 1 2  + i n l 2  = - D  

m22 + i n 2 2  = - K  

m23 + i n 2 3  = - D .  

m l l  + i n l l  - i m 1 3  + n 1 3  = -K  

m 1 2  + i n l 2  - i m 2 3  + n 2 3  = - r 

m 1 3  + i n l 3  - i m 3 3  + n33  = i K  

where K = a + i p  i s  one of two roots (each repeated thrice) of the secular equation 

and the va lues  of D ,  T are different from zero, but otherwise arbitrary. T h i s  arbitrariness arises because of 

the arbitrariness of the value of h and i s  a consequence of t h e  nul lness  of the  vectors IF'", IF''? One may, for 

example, assume that 0 and T are real numbers. 
1 3  

Solving th i s  system and also taking into consideration the  conditions 

n 

2 es mss  = K 
s = l  

3 

s = l  
X eS n s s  = O 
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4 i t  is not  difficult to see that r = 2 ~ ,  p =0,  a = K/3, so that the matrix ( I R  

K 
-0 0 - _  

3 

K 
0 -D - _  

3 

K - _  0 0 
3 

0 0 0 

0 0 -W 

0 -5 0 

I t akes  the form 

.o 0 0 

0 0 -0 

0 -W 0 

K 
U 0 - 

3 

K 
0 - W 

3 

K 
- 0 0 
3 

where w is some real number o&er than zero; the frame of reference i s  determined to within a rotation in the 

and a Lorentz rotation in the plane 

D. Summary 

Summarizing, the following h a s  been derived: 

THEOREM 4. There exis t  three different principal types of gravitational field: 

_ _ -  
(1) The first type with a characteristic K-matrix of the simple type [l 1 1, 1 1 1 I;  for such 

a point of T4 there is determined a real orthogonal frame of reference in which the matrix 

IIRap 1 1  takes  the form of Eq. (23) with the conditions of Eq. (241, and (25). 

_ _  
(2) The second type with a characteristic K-matrix of a nonsimple type [21, 21 1; for i t  the 

frame of reference i s  determined up to two degrees of freedom, and the matrix I IR 

takes  the form of Eq. (29) with the conditions of Eq. (30). 

I I aP 
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- 
(3) T h e  third type a l so  h a s  a nonsimple characteristic Kmatr ix ,  of type [3, 3 1; again the 

canonical frame of reference frame i s  determined up to two degrees of freedom, and the 

matrix I IRQp 1 1  t akes  the form of Eq. (33). 

The  three indicated types allow, of course, a further, more detailed classification. For example, 

one may separa te  the c a s e s  of multiple or real roots, as was done by u s  earlier. 

T h i s  result, derived by the author in 1950, was f i rs t  published in 1951(Ref. 1). In that article there 

was an error in the formulas. T h e  third theorem, in Part 11, was also proved by A. P. Norden in 1952 (in an 

unpublished paper), from h i s  research on bi-affine space.  T h e  proof used  in the  present  work is a third 

variant and i s ,  obviously, the  simplest. 

In regard to the work presented in Part 111, that i s ,  the  determination of a canonical form of a matrix 

IIRaP 1 1  in  a n  orthogonal rectilinear frame of reference, i t  is necessary to make the following remark. I t  

might have seemed poss ib le  at once to write the  canonical form of the matrix I lRQp - K gQP ( 1  by means of 

a generalization of the algebraic theory (Ref. 6). However, t h i s  i s  impossible to do s ince  as coefficients of 

permissible l inear  real transformations in our present six-space, we  may choose only an array of the form 

I [ .  ! . I ]  

A :  = 2 A . . ' ]  
' I  

where 

. I  

A: . I  = (%)p 

are the  coefficients of some real orthogonal transformation at a given point P in a manifold T4. Tha t  is, we 

may u s e  only transformations that are a subgroup of the group of orthogonal rea l  transformations of six- 

space.  

This fact, which necess i ta ted  the arguments of P a r t  III, i s  evident in the  present  case and i s  an 

application of a general theorem by G. B. Gurevich (Ref. 7). 
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